Slicing orbit spaces: Geometry and combinatorics of hyperbolic and even-hyperbolic slices
Permanent link
https://hdl.handle.net/10037/34510Date
2024-09-18Type
Doctoral thesisDoktorgradsavhandling
Author
Lien, ArneAbstract
Motivated by a connection to Timofte’s degree and halfdegree principle we study canonical hyperbolic slices, that is, sets of univariate hyperbolic polynomials that share the same first few coefficients. We study the geometric and combinatorial properties of a natural stratification of these slices and use these properties to improve upon the degree principle.
Amongst the geometric properties we establish is a description of the dimension and relative interior of the strata along with a characterisation of some natural points of “escapes” from these strata. And on the combinatorial side we show that the lattice of strata is determined by the zero-dimensional strata and that the boundary complex of the dual lattice is generically a combinatorial sphere.
We finish by showing that a similar story can be told about a natural stratification of even-hyperbolic slices. These are the subsets of hyperbolic slices consisting of the polynomials with only nonnegative roots and such sets arise in the context of the degree principle for the hyperoctahedral group. Grunnet en kobling til Timoftes grad- og halvgradprinsipp studerer vi såkalte hyperbolske stykker. Dette er mengder bestående av hyperbolske polynomer i en variabel som har de samme første koeffisientene. Vi studerer geometriske og kombinatoriske egenskaper ved en naturlig stratifikasjon av hyperbolske stykker og bruker disse egenskapene til å forbedre Timoftes gradprinsipp.
Innenfor geometri så viser vi hvilke dimensjoner stratene kan ha og vi beskriver det relative indre til
strataene i tillegg til å karakterisere noen naturlige “rømningspunkter” fra strataene. Innen kombinatorikk så viser vi at stratifikasjonen er bestemt av de nulldimensionale strataene og at randkomplekset til den duale delordnede mengden av strata er en kombinatorisk sfære.
Vi avslutter med å vise at en naturlig stratifikasjon av parhyperbolske stykker har lignende geometriske og kombinatoriske egenskaper. Parhyperbolske stykker er delmengder av hyperbolske stykker bestående av de polynomene med kun ikke-negative røtter og slike mengder har en kobling til gradprinsippet for den hyperoktaedriske gruppen.
Publisher
UiT Norges arktiske universitetUiT The Arctic University of Norway
Metadata
Show full item recordCollections
Copyright 2024 The Author(s)
The following license file are associated with this item: