Vis enkel innførsel

dc.contributor.advisorScheiderer, Claus
dc.contributor.authorLien, Arne
dc.date.accessioned2024-09-03T09:32:13Z
dc.date.available2024-09-03T09:32:13Z
dc.date.issued2024-09-18
dc.description.abstractMotivated by a connection to Timofte’s degree and halfdegree principle we study canonical hyperbolic slices, that is, sets of univariate hyperbolic polynomials that share the same first few coefficients. We study the geometric and combinatorial properties of a natural stratification of these slices and use these properties to improve upon the degree principle. Amongst the geometric properties we establish is a description of the dimension and relative interior of the strata along with a characterisation of some natural points of “escapes” from these strata. And on the combinatorial side we show that the lattice of strata is determined by the zero-dimensional strata and that the boundary complex of the dual lattice is generically a combinatorial sphere. We finish by showing that a similar story can be told about a natural stratification of even-hyperbolic slices. These are the subsets of hyperbolic slices consisting of the polynomials with only nonnegative roots and such sets arise in the context of the degree principle for the hyperoctahedral group.en_US
dc.description.abstractGrunnet en kobling til Timoftes grad- og halvgradprinsipp studerer vi såkalte hyperbolske stykker. Dette er mengder bestående av hyperbolske polynomer i en variabel som har de samme første koeffisientene. Vi studerer geometriske og kombinatoriske egenskaper ved en naturlig stratifikasjon av hyperbolske stykker og bruker disse egenskapene til å forbedre Timoftes gradprinsipp. Innenfor geometri så viser vi hvilke dimensjoner stratene kan ha og vi beskriver det relative indre til strataene i tillegg til å karakterisere noen naturlige “rømningspunkter” fra strataene. Innen kombinatorikk så viser vi at stratifikasjonen er bestemt av de nulldimensionale strataene og at randkomplekset til den duale delordnede mengden av strata er en kombinatorisk sfære. Vi avslutter med å vise at en naturlig stratifikasjon av parhyperbolske stykker har lignende geometriske og kombinatoriske egenskaper. Parhyperbolske stykker er delmengder av hyperbolske stykker bestående av de polynomene med kun ikke-negative røtter og slike mengder har en kobling til gradprinsippet for den hyperoktaedriske gruppen.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractAn orbit space can be thought of as the potential solutions to polynomial equations that remain fixed when we alter the polynomials according to certain rules. We are mainly looking at the orbit space of symmetric polynomials, polynomials that remain fixed when we permute the variables in any way. We study slices of the orbit space that correspond to common solutions of sets of symmetric polynomial equations. To understand these slices we split them up into smaller pieces, each of which is characterised by which coordinates are equal. We start by describing the geometry of the pieces and how they are distributed in the slices. Next we describe the structure of the collection of pieces and show that it is akin to a "discrete" ball, like a pentagon or a pyramid. We use this to show that if symmetric polynomial equations have common zeroes, then some of them must lie in certain pieces of a slice. Thereby we obtain a faster way to check if the equations have a common solution or not.en_US
dc.description.sponsorshipMarie Sklodowska-Curie Actions, grant agreement 813211 (POEMA) Tromsø Research Foundation under the grant agreement 17matteCR (SymRAG)en_US
dc.identifier.isbn978-82-8236-584-0 - trykk
dc.identifier.issn978-82-8236-585-7 - pdf
dc.identifier.urihttps://hdl.handle.net/10037/34510
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/813211/EU/Polynomial Optimization, Efficiency through Moments and Algebra/POEMA/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subjectReal algebraic geometryen_US
dc.subjectRepresentation theoryen_US
dc.subjectCombinatoricsen_US
dc.titleSlicing orbit spaces: Geometry and combinatorics of hyperbolic and even-hyperbolic slicesen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)