Show simple item record

dc.contributor.authorKummer, Mario
dc.contributor.authorRiener, Cordian Benedikt
dc.date.accessioned2024-12-09T11:41:58Z
dc.date.available2024-12-09T11:41:58Z
dc.date.issued2024-12-03
dc.description.abstractWe study Sym(∞)-orbit closures of non-necessarily closed points in the Zariski spectrum of the infinite polynomial ring C[xij : i ∈ N, j ∈ [n]]. Among others, we characterize invariant prime ideals in this ring. Furthermore, we study projections of basic equivariant semi-algebraic sets defined by Sym(∞) orbits of polynomials in R[xij : i ∈ N, j ∈ [n]]. For n = 1 we prove a quantifier elimination type result which fails for n > 1.en_US
dc.identifier.citationKummer, Riener. Equivariant algebraic and semi-algebraic geometry of infinite affine space. Journal of Algebra. 2024;666:38-46en_US
dc.identifier.cristinIDFRIDAID 2326793
dc.identifier.doi10.1016/j.jalgebra.2024.11.016
dc.identifier.issn0021-8693
dc.identifier.issn1090-266X
dc.identifier.urihttps://hdl.handle.net/10037/35927
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalJournal of Algebra
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleEquivariant algebraic and semi-algebraic geometry of infinite affine spaceen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)