dc.contributor.author | Kummer, Mario | |
dc.contributor.author | Riener, Cordian Benedikt | |
dc.date.accessioned | 2024-12-09T11:41:58Z | |
dc.date.available | 2024-12-09T11:41:58Z | |
dc.date.issued | 2024-12-03 | |
dc.description.abstract | We study Sym(∞)-orbit closures of non-necessarily closed
points in the Zariski spectrum of the infinite polynomial ring
C[xij : i ∈ N, j ∈ [n]]. Among others, we characterize
invariant prime ideals in this ring. Furthermore, we study
projections of basic equivariant semi-algebraic sets defined by
Sym(∞) orbits of polynomials in R[xij : i ∈ N, j ∈ [n]]. For
n = 1 we prove a quantifier elimination type result which fails
for n > 1. | en_US |
dc.identifier.citation | Kummer, Riener. Equivariant algebraic and semi-algebraic geometry of infinite affine space. Journal of Algebra. 2024;666:38-46 | en_US |
dc.identifier.cristinID | FRIDAID 2326793 | |
dc.identifier.doi | 10.1016/j.jalgebra.2024.11.016 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.issn | 1090-266X | |
dc.identifier.uri | https://hdl.handle.net/10037/35927 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Journal of Algebra | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2024 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Equivariant algebraic and semi-algebraic geometry of infinite affine space | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |