Show simple item record

dc.contributor.advisorJenssen, Robert
dc.contributor.authorBlix, Katalin
dc.date.accessioned2014-10-29T14:17:00Z
dc.date.available2014-10-29T14:17:00Z
dc.date.issued2014-05-30
dc.description.abstractThe machine learning method, Gaussian Process Regression (GPR), has lately been introduced for chlorophyll content mapping from remotely sensed data. It has been shown that GPR has outperformed other machine learning and empirical methods in accuracy, speed and stability. Moreover, GPR not only estimates the chlorophyll content, it also provides the certainty level of the prediction, allowing the assessment of additional certainty maps. However, since GPR is a non-linear kernel based regression method, the relevance of the features are not accessible directly from the weights. The main contribution of this thesis is to develop a procedure for feature sensitivity analysis in order to assign relative importance to the features. The sensitivity analysis was introduced for the predictive mean function and for the predictive variance function of the Gaussian process. Then the empirical estimates for the derived sensitivity functions were applied to a land chlorophyll dataset and to two ocean chlorophyll datasets. The sensitivity analysis revealed the most important spectral bands for land chlorophyll and for ocean chlorophyll prediction. Applying the proposed methodology to the land chlorophyll dataset discovered that bands outside the chlorophyll absorption spectrum also contribute to the prediction of chlorophyll. The results of the sensitivity analysis of the ocean chlorophyll datasets open the possibility of discriminating between Case-1 water and Case-2 water condition. The method also provides additional information through the sensitivity of the predictive variance. Thus, not only the most relevant spectral bands can be revealed, but also the stability of the variance for the feature in interest can be accessed.en
dc.identifier.urihttps://hdl.handle.net/10037/6784
dc.identifier.urnURN:NBN:no-uit_munin_6384
dc.language.isoengen
dc.publisherUiT Norges arktiske universiteten
dc.publisherUiT The Arctic University of Norwayen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2014 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)en_US
dc.subject.courseIDFYS-3941en
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en
dc.titleSensitivity analysis of Gaussian process machine learning for chlorophyll prediction from optical remote sensingen
dc.typeMaster thesisen
dc.typeMastergradsoppgaveen


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)