Show simple item record

dc.contributor.authorBlättler, C.L.
dc.contributor.authorClaire, M.W.
dc.contributor.authorPrave, A.R.
dc.contributor.authorKirsimäe, K.
dc.contributor.authorHiggins, J.A.
dc.contributor.authorMedvedev, P.V.
dc.contributor.authorRomashkin, A.E
dc.contributor.authorRychanchik, D.V.
dc.contributor.authorZerkle, A.L.
dc.contributor.authorPaiste, Kärt
dc.contributor.authorKreitsmann, T.
dc.contributor.authorMillar, I.L.
dc.contributor.authorHayles, J.A.
dc.contributor.authorBao, H.
dc.contributor.authorTurchyn, A.V.
dc.contributor.authorWarke, M.R.
dc.contributor.authorLepland, Aivo
dc.date.accessioned2019-02-26T09:28:42Z
dc.date.available2019-02-26T09:28:42Z
dc.date.issued2018-04-20
dc.description.abstractMajor changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic era (2.5 to 1.6 billion years ago). Increasing oxidation dramatically changed Earth’s surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a 2-billion-year-old, ~800-meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 meters) followed by units dominated by anhydrite-magnesite (~500 meters) and dolomite-magnesite (~200 meters). The evaporite minerals robustly constrain marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to more than 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth’s oxygenation.en_US
dc.description.sponsorshipThe Simons Foundation The Estonian Science Agency Princeton Universityen_US
dc.descriptionThis is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in <i>Science</i> on vol. 360, 20 April 2018, DOI: <a href=https://doi.org/10.1126/science.aar2687> https://doi.org/10.1126/science.aar2687</a>.en_US
dc.identifier.citationBlättler, C.L., Claire, M.W., Prave, A.R., Kirsimäe, K., Higgins, J.A., Medvedev, P.V., ... Lepland, A. (2018). Two-billion-year-old evaporites capture Earth’s great oxidation. <i>Science, 360</i>(6386), 320-323. https://doi.org/10.1126/science.aar2687en_US
dc.identifier.cristinIDFRIDAID 1575656
dc.identifier.doi10.1126/science.aar2687
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttps://hdl.handle.net/10037/14771
dc.language.isoengen_US
dc.publisherAmerican Association for the Advancement of Scienceen_US
dc.relation.journalScience
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020-EU.1.1./678812/EU/Quantifying the evolution of Earth's atmosphere with novel isotope systems and modelling/OXYGEN/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleTwo-billion-year-old evaporites capture Earth’s great oxidationen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record