Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency
Permanent lenke
https://hdl.handle.net/10037/19147Dato
2020-07-30Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Hansen, Ida Kristine Østnes; Lövdahl, Tomas; Simonovic, Danijela; Østnes Hansen, Kine; Andersen, Aaron John Christian; Devold, hege; Richard, Céline Sarah Marine; Andersen, Jeanette Hammer; Strøm, Morten B.; Haug, TorSammendrag
Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence analysis and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico analysis of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 µg/mL against Staphylococcus aureus and 3.9 µg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.
Er en del av
Hansen, I.K.Ø. (2022). Antimicrobial peptides from the Arctic ascidian Synoicum turgens. (Doctoral thesis). https://hdl.handle.net/10037/25305.Forlag
MDPISitering
Hansen IK, Lövdahl, Simonovic D, Østnes Hansen KØH, Andersen AJC, Devold h, Richard CSM, Andersen JH, Strøm mbs, Haug T. Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency. International Journal of Molecular Sciences. 2020;21(15)Metadata
Vis full innførselSamlinger
Copyright 2020 The Author(s)