Show simple item record

dc.contributor.authorLindholm, Evita Maria
dc.contributor.authorKristian, Alexandr
dc.contributor.authorNalwoga, Hawa
dc.contributor.authorKruger, Kristi
dc.contributor.authorNygård, Ståle
dc.contributor.authorAkslen, Lars A.
dc.contributor.authorMælandsmo, Gunhild
dc.date.accessioned2022-06-30T11:52:53Z
dc.date.available2022-06-30T11:52:53Z
dc.date.issued2012-03-31
dc.description.abstractSeveral clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD ¼ proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCg1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy.en_US
dc.identifier.citationLindholm EM, Kristian A, Nalwoga H, Kruger K, Nygård S, Akslen LA, Mælandsmo GM, Engebråten O. Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts. Molecular Oncology. 2012;6(4):418-427en_US
dc.identifier.cristinIDFRIDAID 952277
dc.identifier.doi10.1016/j.molonc.2012.03.006
dc.identifier.issn1574-7891
dc.identifier.issn1878-0261
dc.identifier.urihttps://hdl.handle.net/10037/25671
dc.language.isoengen_US
dc.relation.journalMolecular Oncology
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2012 Federation of European Biochemical Societies.en_US
dc.subjectVDP::Medisinske fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710::Farmakologi: 728en_US
dc.subjectVDP::Midical sciences: 700::Basic medical, dental and veterinary sciences: 710::Pharmacology: 728en_US
dc.subjectVDP::Medisinske fag: 700::Klinisk medisinske fag: 750::Onkologi: 762en_US
dc.subjectVDP::Midical sciences: 700::Clinical medical sciences: 750::Oncology: 762en_US
dc.titleEffect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenograftsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record