dc.contributor.author | Andersen, Jane Lund | |
dc.contributor.author | Margreth, Annina | |
dc.contributor.author | Fredin, Ola | |
dc.contributor.author | Linge, Henriette | |
dc.contributor.author | Goodfellow, Bradley W. | |
dc.contributor.author | Faust, Johan Christoph | |
dc.contributor.author | Knies, Jochen | |
dc.contributor.author | Solbakk, Terje | |
dc.contributor.author | Brook, Edward J. | |
dc.contributor.author | Scheiber, Thomas | |
dc.contributor.author | van der Lelij, Roelant | |
dc.contributor.author | Burki, Valentin Josef | |
dc.contributor.author | Rubensdotter, Brita Lena Eleonor Fredin | |
dc.contributor.author | Himmler, Tobias | |
dc.contributor.author | Yesilyurt, Serdar | |
dc.contributor.author | Christl, Marcus | |
dc.contributor.author | Vockenhuber, Christof | |
dc.contributor.author | Akcar, Naki | |
dc.date.accessioned | 2022-08-22T06:29:10Z | |
dc.date.available | 2022-08-22T06:29:10Z | |
dc.date.issued | 2021-10-26 | |
dc.description.abstract | Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales
of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast
that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the
recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove
most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr<sup>−1</sup>
) in
cold temperate to subarctic coastal locations. | en_US |
dc.identifier.citation | Andersen JL, Margreth A, Fredin O, Linge HL, Goodfellow BW, Faust J, Knies J, Solbakk T, Brook EJ, Scheiber T, van der Lelij J, Burki VJ, Rubensdotter BL, Himmler T, Yesilyurt, Christl M, Vockenhuber C, Akcar N. Rapid post-glacial bedrock weathering in coastal Norway. Geomorphology. 2021;397 | en_US |
dc.identifier.cristinID | FRIDAID 1951725 | |
dc.identifier.doi | 10.1016/j.geomorph.2021.108003 | |
dc.identifier.issn | 0169-555X | |
dc.identifier.issn | 1872-695X | |
dc.identifier.uri | https://hdl.handle.net/10037/26295 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Geomorphology | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0169555X21004116 | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.title | Rapid post-glacial bedrock weathering in coastal Norway | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |