Combined effects of temperature and fishing mortality on the Barents Sea ecosystem stability
Permanent lenke
https://hdl.handle.net/10037/27154Dato
2022-07-16Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
Temporal variability in abundance and composition of species in marine ecosystems
results from a combination of internal processes, external drivers, and stochasticity.
One way to explore the temporal variability in an ecosystem is through temporal stability, measured using the inverse of the coefficient of variation for biomass of single
species. The effect of temperature and fisheries on the variability of the Barents Sea
food web is still poorly understood. To address this question, we simulate the possible dynamics of Barents Sea food web under different temperature and fishery scenarios using a simple food-web model (Non-Deterministic Network Dynamic
[NDND]). The NDND model, which is based on chance and necessity (CaN), defines
the state space of the ecosystem using its structural constraints (necessity) and
explores it stochastically (chance). The effects of temperature and fisheries on stability are explored both separately and combined. The simulation results suggest that
increasing temperature has a negative effect on species biomass and increasing fisheries triggers compensatory dynamics of fish species. There is a major intra-scenario
variability in temporal stability, while individual scenarios of temperature and fisheries display a weak negative impact and no effect on stability, respectively. However,
combined scenarios indicate that fisheries amplify the effects of temperature on stability, while increasing temperature leads to a shift from synergistic to antagonistic
effects between these two drivers.
Forlag
WileySitering
Sivel, Planque, Lindstrøm, Yoccoz. Combined effects of temperature and fishing mortality on the Barents Sea ecosystem stability. Fisheries Oceanography. 2022Metadata
Vis full innførselSamlinger
Copyright 2022 The Author(s)