Vis enkel innførsel

dc.contributor.advisorJohnsen, Trygve
dc.contributor.authorBøgner, Tobias
dc.date.accessioned2023-07-06T05:36:47Z
dc.date.available2023-07-06T05:36:47Z
dc.date.issued2023-06-01en
dc.description.abstractIn this thesis, we first define error-correcting codes and describe many of their basic properties. Then we proceed to describe how matroids are a useful tool to determine many basic properties of error-correcting codes. In the remaining half of the thesis, we study a more specific theme; derived matroids. We describe in detail three different constructions, one invented already in 1979 by Longyear, as well as two newer ones invented respectively by Oxley and wang, as well as Freij-Hollanti, Jurrius, and Kuznetsova. We illustrate their similarities and differences through examples and also sketch an application of derived matroids, in computer science.en_US
dc.identifier.urihttps://hdl.handle.net/10037/29572
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universitetno
dc.publisherUiT The Arctic University of Norwayen
dc.rights.holderCopyright 2023 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDMAT-3907
dc.subjectCodesen_US
dc.subjectMatroidsen_US
dc.subjectDerived matroidsen_US
dc.titleDerived matroids: Comparison between three different concepts of derived matroidsen_US
dc.typeMastergradsoppgavenor
dc.typeMaster thesiseng


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)