dc.description.abstract | Bipartite network analysis is a powerful tool to study the processes structuring
interactions in ecological communities. In applying the method, it is assumed
that the sampled interactions provide an accurate representation of the actual
community. However, acquiring a representative sample may be difficult as
not all species are equally abundant or easily identifiable. Two potential sampling issues can compromise the conclusions of bipartite network analyses:
failure to capture the full range of interactions (sampling completeness) and
use of a taxonomic level higher than species to evaluate the network
(taxonomic resolution). We asked how commonly used descriptors of bipartite
antagonistic communities (modularity, nestedness, connectance, and specialization [H2
0
]) are affected by reduced host sampling completeness, parasite
taxonomic resolution, and their crossed effect, as they are likely to co-occur.
We used a quantitative niche model to generate weighted bipartite networks
that resembled natural host–parasite communities. The descriptors were more
sensitive to uncertainty in parasite taxonomic resolution than to host sampling
completeness. When only 10% of parasite taxonomic resolution was retained,
modularity and specialization decreased by ~76% and ~12%, respectively, and
nestedness and connectance increased by ~114% and ~345% respectively.
The loss of taxonomic resolution led to a wide range of possible communities,
which made it difficult to predict its effects on a given network. With regards
to host sampling completeness, standardized nestedness, connectance, and
specialization were robust, whereas modularity was sensitive (~30% decrease).
The combination of both sampling issues had an additive effect on modularity.
In communities with low effort for both sampling issues (50%–10% of sampling
completeness and taxonomic resolution), estimators of modularity, and
nestedness could not be distinguished from those of random assemblages.
Thus, the categorical description of communities with low sampling effort
(e.g., if a community is modular or not) should be done with caution. We recommend evaluating both sampling completeness and taxonomic certainty
when conducting bipartite network analyses. Care should also be exercised
when using nonrobust descriptors (the four descriptors for parasite taxonomic
resolution; modularity for host sampling completeness) when sampling issues
are likely to affect a dataset. | en_US |