Vis enkel innførsel

dc.contributor.authorCastillo, Federico
dc.contributor.authorCid-Ruiz, Yairon
dc.contributor.authorMohammadi, Fatemeh
dc.contributor.authorMontaño, Jonathan
dc.date.accessioned2024-01-17T12:18:08Z
dc.date.available2024-01-17T12:18:08Z
dc.date.issued2023-11-03
dc.description.abstractWe prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.en_US
dc.identifier.citationCastillo, Cid-Ruiz, Mohammadi, Montaño. Double Schubert polynomials do have saturated Newton polytopes. Forum of Mathematics, Sigma. 2023;11en_US
dc.identifier.cristinIDFRIDAID 2212630
dc.identifier.doi10.1017/fms.2023.101
dc.identifier.issn2050-5094
dc.identifier.urihttps://hdl.handle.net/10037/32529
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalForum of Mathematics, Sigma
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleDouble Schubert polynomials do have saturated Newton polytopesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)