Vis enkel innførsel

dc.contributor.authorSerov, Pavel
dc.contributor.authorAndreassen, Karin Marie
dc.contributor.authorWinsborrow, Monica Caroline Mackay
dc.contributor.authorMattingsdal, Rune
dc.contributor.authorPatton, Henry Jared
dc.date.accessioned2024-08-20T12:19:05Z
dc.date.available2024-08-20T12:19:05Z
dc.date.issued2024-07-11
dc.description.abstractDue to tectonic uplift in the Cenozoic and numerous shelf-wide glaciations during the Quaternary, ∼1–2.5 km of sedimentary overburden has been eroded from the Barents Sea shelf, leading to the exhumation and partial uncapping of hydrocarbon accumulations. Widespread natural gas and oil leakage from the glacially eroded middle-upper Triassic reservoir directly into the water column has been documented at the Sentralbanken high in the northern Norwegian Barents Sea. However, it remains unclear whether the hydrocarbon leakage occurs only from the middle-upper Triassic reservoir units in geological settings exceptionally conducive to hydrocarbon leakage, or if other reservoir formations contributed to the release of hydrocarbons into the water column. It is also not clear whether complete erosion of the caprock is a prerequisite for widespread liberation of natural gas and oil from glacially eroded reservoirs across Arctic continental shelves. Here we analyze multibeam echosounder data covering ∼5,000 km2 and a suite of high-resolution P-cable seismic lines from a range of geological structures across the northern Norwegian Barents Sea. Our analyses reveal that ∼21,700 natural gas seeps originate from exhumed, faulted and variably eroded structural highs bearing a range of Mesozoic reservoir formations. All investigated structural highs fuel seabed methane release hotspots with no exception. Evident from observations of seismic anomalies, fluid accumulations are pervasive in the subsurface and likely to continue fuelling seabed gas seepage into the future. We also document that gas seepage through faults piercing overburden, caprocks and reaching potential reservoir levels is pervasive at all investigated structural highs. On the Storbanken high and the Kong Karl platform, such fault-controlled seepage is more prevalent than seepage from reservoir formations subcropping below the seafloor. Using a simple parametrization approach, we estimate that seeps identified within our multibeam data coverage produce a seabed methane flux of 61 x 107 mol/yr (9,803 ton/yr), which is one to two orders of magnitude higher than other globally known submarine methane seepage provinces. Fluxes of methane from sea water to the air above the thermogenic gas seep provinces in the northern Norwegian Barents Sea remain to be determined.en_US
dc.identifier.citationSerov P, Andreassen K, Winsborrow M, Mattingsdal R, Patton H. Geological and glaciological controls of 21,700 active methane seeps in the northern Norwegian Barents sea. Frontiers in Earth Science. 2024;12en_US
dc.identifier.cristinIDFRIDAID 2281943
dc.identifier.doi10.3389/feart.2024.1404027
dc.identifier.issn2296-6463
dc.identifier.urihttps://hdl.handle.net/10037/34298
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.journalFrontiers in Earth Science
dc.relation.projectIDNorges forskningsråd: 223259en_US
dc.relation.projectIDNorges forskningsråd: 325610en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleGeological and glaciological controls of 21,700 active methane seeps in the northern Norwegian Barents seaen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)