Show simple item record

dc.contributor.advisorJørgen, Berge
dc.contributor.authorSchartmüller, Bernhard
dc.date.accessioned2025-08-25T11:00:50Z
dc.date.available2025-08-25T11:00:50Z
dc.date.issued2025-09-19
dc.description.abstractWhile commercial light instruments can measure high and medium light intensities, there are few that can capture the low light conditions, consisting of light from moon, stars and aurora, that prevail during the (polar) night. In the ocean, light intensities are even lower because of the high absorption of water, optically significant constituents and phytoplankton. In polar regions, snow and sea ice can reduce the light in the ocean even further to a fraction of the light intensities at the surface. Still, even these low light intensities are sufficient to act as a cue for biological processes e.g. diel vertical migration of zooplankton. This illustrates the need for sensitive light instruments. However, for measurements to be useful these need to be of sufficient quality. The focus of this thesis is the development of characterization and calibration methods for two ocean light instruments. The first one, the Optical Chain and Logger (OptiCAL) is an autonomous ice-tethered observatory consisting of a buoy and a cable that can host up to 32 light instruments, providing depth resolved light measurements. The second one is a commercial underwater hyperspectral imaging (UHI) instrument that can provide angle-resolved radiance measurements and hyperspectral images. To maximize the range of potential users, the developed calibration methods use simple setups that have potential to be replicated at many institutions. In addition, the interdisciplinary part of this thesis discusses three different platforms for collecting scientific data in the marine arctic and the applicable legal framework, which is a prerequisite for carrying out the research. This is especially relevant in times of increasing autonomous data collection.en_US
dc.description.abstractMens kommersielle lyssensorer kan måle høye og middels lysintensiteter, er det få som kan måle i tilnærmet mørke og i miljøer karakterisert av lave lysforhold. Et godt eksempel på dette er den arktiske polarnatta der lys fra måne, stjerner og nordlys dominerer, og i havet på relativt dypt vann. I polare strøk kan snø og havis redusere lyset i havet ytterlige til en brøkdel av lysintensiteten ved overflaten. Likevel er selv disse lave lysintensiteter tilstrekkelige til å styre biologiske prosesser som f.eks. vertikal migrasjon av dyreplankton. Dette illustrerer behov for følsomme lysinstrumenter. Men for at målinger skal være nyttige, må disse være av tilstrekkelig kvalitet. Denne avhandling fokuserer på utvikling av karakteriserings- og kalibreringsmetoder for to lysinstrumenter som brukes for å måle lyset i havet. Den første, som heter Optical Chain and Logger (OptiCAL) er et autonomt isbasert observatorium som består av en bøye og en kabel som kan bære opp til 32 lysinstrumenter, som gir en høy opplysning av lysmålinger med dybde. Den andre er et kommersielt Underwater Hyperspectral Imaging (UHI) instrument som kan gjøre lysmålinger over mange vinkler samtidig og gir hyperspektrale bilder. For å nå mest mulige brukerne, bruker de utviklede kalibreringsmetoder enkle oppsett/utstyr som er tilgjengelig ved de fleste institusjoner. Den tverrfaglige delen av denne avhandling diskuterer tre ulike plattformer som brukes for innsamling av vitenskapelig data i polhavet og gjeldende juridisk rammeverk, som er en forutsetning for å gjennomføre forskningen. Dette er spesielt relevant i tider med økende autonom datainnsamling.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractIn the ocean, light gets absorbed quickly by water, sediment, algae and colored dissolved organic material. In the polar regions, snow and sea ice reduce the light in the ocean even further. This thesis presents methods for the calibration of two novel underwater light sensors that are sensitive enough for measuring these low light intensities. The developed calibration methods use a simple setup which makes them affordable for most laboratories. The results from field measurements in the ocean show that the developed methods produce realistic results. The interdisciplinary part of the thesis looks at three technologies for collecting research data in the Arctic and the applicable legal framework and thus lays the groundwork for successfully collecting quality light measurements in the Arctic.en_US
dc.description.sponsorshipThis PhD project was funded by the inter-faculty ATLAR – Arctic Ocean Technology and Law of the Sea Research project at UiT which “[…] aims to integrate innovative technologies such as remote sensing from satellites and ocean floor observatories, as well as develop solutions for future legal framework that will protect retrieval of data from integrated technologies.”. The work was also part of the Arctic ABC-D infrastructure project (NRC grant 245923) and the Deep impact project (NRC grant 300333).en_US
dc.identifier.isbn978-82-8266-289-5
dc.identifier.urihttps://hdl.handle.net/10037/38019
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Woker, H., Schartmüller, B., Dølven, K.O. & Blix, K. (2020). The law of the sea and current practices of marine scientific research in the Arctic. <i>Marine Policy, 115</i>, 103850. Also available in Munin at <a href=https://hdl.handle.net/10037/18115>https://hdl.handle.net/10037/18115</a>. <p>Paper II: Schartmüller, B., Anderson, P., McKee, D., Connan-McGinty, S., Kopec, T.P., Daase, M., Johnsen, G. & Berge, J. (2023). Development and calibration of a high dynamic range and autonomous ocean-light instrument to measure sub-surface profiles in ice-covered waters. <i>Applied Optics, 62</i>(31), 8308-8315. Also available in Munin at <a href=https://hdl.handle.net/10037/32006>https://hdl.handle.net/10037/32006</a>. <p>Paper III: Schartmüller, B., McKee, D., Berge, J. & Johnsen, G. (2024). Calibration verification of an underwater hyperspectral imaging push broom instrument to measure light in absolute units and field demonstration. <i>Applied Optics, 63</i>(27), 7200-7211. Also available in Munin at <a href=https://hdl.handle.net/10037/35055>https://hdl.handle.net/10037/35055</a>.en_US
dc.relation.isbasedonAnderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., McKee, D., Johnsen, G. & Berge, J. (2023). In-air time series for intercomparison of a 11 high dynamic range and autonomous ocean-light instruments (OptiCAL). NIRD research data archive, <a href=https://doi.org/10.11582/2023.00111>https://doi.org/10.11582/2023.00111</a>.en_US
dc.relation.isbasedonAnderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., Venables, E.J., McKee, D., Johnsen, G. & Berge, J. (2023). Calibration data for a high dynamic range and autonomous ocean-light instrument (OptiCAL). NIRD research data archive, <a href=https://doi.org/10.11582/2023.00112>https://doi.org/10.11582/2023.00112</a>.en_US
dc.relation.isbasedonAnderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., Lennert, K., Daase, M., Connan-McGinty, S., McKee, D., Johnsen, G. & Berge, J. (2023). Deployment of a high dynamic range and autonomous ocean-light instrument (OptiCAL) in the Arctic Ocean from July to December 2019 and corresponding surface irradiance (EPAR), solar and lunar zenith angles modelled with the HEIMDALL radiative transfer model. NIRD research data archive, <a href=https://doi.org/10.11582/2023.00110>https://doi.org/10.11582/2023.00110</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectCalibrationen_US
dc.subjectCharacterizationen_US
dc.subjectOcean lighten_US
dc.subjectMarine Opticsen_US
dc.subjectIce tethered observatoryen_US
dc.subjectLight sensoren_US
dc.subjectOptiCALen_US
dc.subjectUnderwater Hyperspectral Imagingen_US
dc.subjectUHIen_US
dc.subjectArcticen_US
dc.subjectLow light intensitiesen_US
dc.titleCharacterization, calibration and optical performance of ocean light instruments and the legal background for deployment in the Arcticen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)