dc.contributor.advisor | Jørgen, Berge | |
dc.contributor.author | Schartmüller, Bernhard | |
dc.date.accessioned | 2025-08-25T11:00:50Z | |
dc.date.available | 2025-08-25T11:00:50Z | |
dc.date.issued | 2025-09-19 | |
dc.description.abstract | While commercial light instruments can measure high and medium light intensities, there are few that can capture the low light conditions, consisting of light from moon, stars and aurora, that prevail during the (polar) night. In the ocean, light intensities are even lower because of the high absorption of water, optically significant constituents and phytoplankton. In polar regions, snow and sea ice can reduce the light in the ocean even further to a fraction of the light intensities at the surface. Still, even these low light intensities are sufficient to act as a cue for biological processes e.g. diel vertical migration of zooplankton. This illustrates the need for sensitive light instruments.
However, for measurements to be useful these need to be of sufficient quality. The focus of this thesis is the development of characterization and calibration methods for two ocean light instruments. The first one, the Optical Chain and Logger (OptiCAL) is an autonomous ice-tethered observatory consisting of a buoy and a cable that can host up to 32 light instruments, providing depth resolved light measurements. The second one is a commercial underwater hyperspectral imaging (UHI) instrument that can provide angle-resolved radiance measurements and hyperspectral images.
To maximize the range of potential users, the developed calibration methods use simple setups that have potential to be replicated at many institutions. In addition, the interdisciplinary part of this thesis discusses three different platforms for collecting scientific data in the marine arctic and the applicable legal framework, which is a prerequisite for carrying out the research. This is especially relevant in times of increasing autonomous data collection. | en_US |
dc.description.abstract | Mens kommersielle lyssensorer kan måle høye og middels lysintensiteter, er det få som kan måle i tilnærmet mørke og i miljøer karakterisert av lave lysforhold. Et godt eksempel på dette er den arktiske polarnatta der lys fra måne, stjerner og nordlys dominerer, og i havet på relativt dypt vann. I polare strøk kan snø og havis redusere lyset i havet ytterlige til en brøkdel av lysintensiteten ved overflaten. Likevel er selv disse lave lysintensiteter tilstrekkelige til å styre biologiske prosesser som f.eks. vertikal migrasjon av dyreplankton. Dette illustrerer behov for følsomme lysinstrumenter.
Men for at målinger skal være nyttige, må disse være av tilstrekkelig kvalitet. Denne avhandling fokuserer på utvikling av karakteriserings- og kalibreringsmetoder for to lysinstrumenter som brukes for å måle lyset i havet. Den første, som heter Optical Chain and Logger (OptiCAL) er et autonomt isbasert observatorium som består av en bøye og en kabel som kan bære opp til 32 lysinstrumenter, som gir en høy opplysning av lysmålinger med dybde. Den andre er et kommersielt Underwater Hyperspectral Imaging (UHI) instrument som kan gjøre lysmålinger over mange vinkler samtidig og gir hyperspektrale bilder.
For å nå mest mulige brukerne, bruker de utviklede kalibreringsmetoder enkle oppsett/utstyr som er tilgjengelig ved de fleste institusjoner. Den tverrfaglige delen av denne avhandling diskuterer tre ulike plattformer som brukes for innsamling av vitenskapelig data i polhavet og gjeldende juridisk rammeverk, som er en forutsetning for å gjennomføre forskningen. Dette er spesielt relevant i tider med økende autonom datainnsamling. | en_US |
dc.description.doctoraltype | ph.d. | en_US |
dc.description.popularabstract | In the ocean, light gets absorbed quickly by water, sediment, algae and colored dissolved organic material. In the polar regions, snow and sea ice reduce the light in the ocean even further. This thesis presents methods for the calibration of two novel underwater light sensors that are sensitive enough for measuring these low light intensities. The developed calibration methods use a simple setup which makes them affordable for most laboratories. The results from field measurements in the ocean show that the developed methods produce realistic results. The interdisciplinary part of the thesis looks at three technologies for collecting research data in the Arctic and the applicable legal framework and thus lays the groundwork for successfully collecting quality light measurements in the Arctic. | en_US |
dc.description.sponsorship | This PhD project was funded by the inter-faculty ATLAR – Arctic Ocean Technology and Law
of the Sea Research project at UiT which “[…] aims to integrate innovative technologies such
as remote sensing from satellites and ocean floor observatories, as well as develop solutions
for future legal framework that will protect retrieval of data from integrated technologies.”.
The work was also part of the Arctic ABC-D infrastructure project (NRC grant 245923) and
the Deep impact project (NRC grant 300333). | en_US |
dc.identifier.isbn | 978-82-8266-289-5 | |
dc.identifier.uri | https://hdl.handle.net/10037/38019 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.relation.haspart | <p>Paper I: Woker, H., Schartmüller, B., Dølven, K.O. & Blix, K. (2020). The law of the sea and current practices of marine scientific research in the Arctic. <i>Marine Policy, 115</i>, 103850. Also available in Munin at <a href=https://hdl.handle.net/10037/18115>https://hdl.handle.net/10037/18115</a>.
<p>Paper II: Schartmüller, B., Anderson, P., McKee, D., Connan-McGinty, S., Kopec, T.P., Daase, M., Johnsen, G. & Berge, J. (2023). Development and calibration of a high dynamic range and autonomous ocean-light instrument to measure sub-surface profiles in ice-covered waters. <i>Applied Optics, 62</i>(31), 8308-8315. Also available in Munin at <a href=https://hdl.handle.net/10037/32006>https://hdl.handle.net/10037/32006</a>.
<p>Paper III: Schartmüller, B., McKee, D., Berge, J. & Johnsen, G. (2024). Calibration verification of an underwater hyperspectral imaging push broom instrument to measure light in absolute units and field demonstration. <i>Applied Optics, 63</i>(27), 7200-7211. Also available in Munin at <a href=https://hdl.handle.net/10037/35055>https://hdl.handle.net/10037/35055</a>. | en_US |
dc.relation.isbasedon | Anderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., McKee, D., Johnsen, G. & Berge, J. (2023). In-air time series for intercomparison of a 11 high dynamic range and autonomous ocean-light instruments (OptiCAL). NIRD research data archive, <a href=https://doi.org/10.11582/2023.00111>https://doi.org/10.11582/2023.00111</a>. | en_US |
dc.relation.isbasedon | Anderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., Venables, E.J., McKee, D., Johnsen, G. & Berge, J. (2023). Calibration data for a high dynamic range and autonomous ocean-light instrument (OptiCAL). NIRD research data archive, <a href=https://doi.org/10.11582/2023.00112>https://doi.org/10.11582/2023.00112</a>. | en_US |
dc.relation.isbasedon | Anderson, P., Schartmüller, B., Vogedes, D.L., Kopec, T.P., Lennert, K., Daase, M., Connan-McGinty, S., McKee, D., Johnsen, G. & Berge, J. (2023). Deployment of a high dynamic range and autonomous ocean-light instrument (OptiCAL) in the Arctic Ocean from July to December 2019 and corresponding surface irradiance (EPAR), solar and lunar zenith angles modelled with the HEIMDALL radiative transfer model. NIRD research data archive, <a href=https://doi.org/10.11582/2023.00110>https://doi.org/10.11582/2023.00110</a>. | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2025 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.subject | Calibration | en_US |
dc.subject | Characterization | en_US |
dc.subject | Ocean light | en_US |
dc.subject | Marine Optics | en_US |
dc.subject | Ice tethered observatory | en_US |
dc.subject | Light sensor | en_US |
dc.subject | OptiCAL | en_US |
dc.subject | Underwater Hyperspectral Imaging | en_US |
dc.subject | UHI | en_US |
dc.subject | Arctic | en_US |
dc.subject | Low light intensities | en_US |
dc.title | Characterization, calibration and optical performance of ocean light instruments and the legal background for deployment in the Arctic | en_US |
dc.type | Doctoral thesis | en_US |
dc.type | Doktorgradsavhandling | en_US |