Show simple item record

dc.contributor.authorMarsland, Finn
dc.contributor.authorAnson, Judith
dc.contributor.authorWaddington, Gordon
dc.contributor.authorHolmberg, Hans-Christer
dc.contributor.authorChapman, Dale W
dc.date.accessioned2019-03-25T11:44:16Z
dc.date.available2019-03-25T11:44:16Z
dc.date.issued2018-05-17
dc.description.abstractWe compare the macro-kinematics of six elite female cross-country skiers competing in 1.1-km Sprint and 10.5-km Distance classical technique events on consecutive days under similar weather and track conditions. The relative use of double pole (DP), kick-double pole (KDP), diagonal stride (DS), tucking (Tuck) and turning (Turn) subtechniques, plus each technique’s respective velocities, cycle lengths and cycle rates were monitored using a single micro-sensor unit worn by each skier during the Sprint qualification, semi-final and finals, and multiple laps of the Distance race. Over a 1.0-km section of track common to both Sprint and Distance events, the mean race velocity, cyclical sub-technique velocities, and cycle rates were higher during the Sprint race, while Tuck and Turn velocities were similar. Velocities with KDP and DS on the common terrain were higher in the Sprint (KDP +12%, DS +23%) due to faster cycle rates (KDP +8%, DS +11%) and longer cycle lengths (KDP +5%, DS +10%), while the DP velocity was higher (+8%) with faster cycle rate (+16%) despite a shorter cycle length (−9%). During the Sprint the percentage of total distance covered using DP was greater (+15%), with less use of Tuck (−19%). Across all events and rounds, DP was the most used sub-technique in terms of distance, followed by Tuck, DS, Turn and KDP. KDP was employed relatively little, and during the Sprint by only half the participants. Tuck was the fastest sub-technique followed by Turn, DP, KDP, and DS. These findings reveal differences in the macro-kinematic characteristics and strategies utilized during Sprint and Distance events, confirm the use of higher cycle rates in the Sprint, and increase our understanding of the performance demands of cross-country skiing competition.en_US
dc.descriptionFirst published by Frontiers Media. Source at <a href=https://doi.org/10.3389/fphys.2018.00570>https://doi.org/10.3389/fphys.2018.00570. </a>en_US
dc.identifier.citationMarsland, F., Anson, J., Waddington, G., Holmberg, H-C. & Chapman, D.W. (2018). Macro-kinematic differences between Sprint and Distance cross-country skiing competitions using the classical technique. <i>Frontiers in Physiology</i>, 9:570. https://doi.org/10.3389/fphys.2018.00570en_US
dc.identifier.cristinIDFRIDAID 1627469
dc.identifier.doi10.3389/fphys.2018.00570
dc.identifier.issn1664-042X
dc.identifier.urihttps://hdl.handle.net/10037/15056
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.relation.journalFrontiers in Physiology
dc.rights.accessRightsopenAccessen_US
dc.subjectkinematicsen_US
dc.subjectcycle lengthen_US
dc.subjectcycle rateen_US
dc.subjectperformance analysisen_US
dc.subjectwearable sensorsen_US
dc.subjectWinter Olympicsen_US
dc.subjectVDP::Medical disciplines: 700::Sports medicine: 850en_US
dc.subjectVDP::Medisinske Fag: 700::Idrettsmedisinske fag: 850en_US
dc.titleMacro-kinematic differences between Sprint and Distance cross-country skiing competitions using the classical techniqueen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record