Development of a bioinformatic framework for the phylogenetic and structural analyses of protein evolution and co-evolution
Permanent link
https://hdl.handle.net/10037/34237View/ Open
Thesis introduction & Paper 2. NB Results section removed as it contains unpublished data. (PDF)
Entire thesis in one comprehensive file (PDF)
File(s) with restricted access are under embargo until 2028-08-20
Date
2024-08-20Type
Doctoral thesisDoktorgradsavhandling
Author
Hsieh, Yin-ChenAbstract
This thesis investigates the evolution and co-evolution of proteins and their implications in molecular biology through a bioinformatics approach. It develops a framework for studying these processes that operates across the taxonomic scales and at the molecular level. This framework generates a large-scale overview of evolutionary patterns and pinpoints specific interaction sites in proteins, leveraging state-of-the-art sequence co-evolution and protein structural prediction techniques. More specifically, the framework constructs two tools: a tool for the phylogenetic mapping of protein presence-absence, and a pipeline incorporating Direct Coupling Analysis for detecting inter-protein co-evolution, and develops strategies for use of AlphaFold2 for predicting complex protein interactions. Utilizing this framework, this research addresses critical questions in molecular biology, particularly in the context of pathway evolution, organism-specific pathway preferences, and protein-protein interactions. The studies presented in this thesis demonstrate the application of these tools in various biological contexts involving enzymes in the NAD recycling pathway and regulatory proteins in the mTOR signaling network. The developed framework not only advances our understanding of molecular biology but also opens up new avenues for experimental validation of predicted interactions and further computational exploration, especially towards integration of various types of results. Future improvements to this framework will focus on incorporations of sequence-based information on paralogues and post-translational modifications, improving the interpretability of results, and incorporating advanced structural prediction models to better handle the genomic complexity of eukaryotic systems. This thesis underscores the potential of bioinformatics in transforming our approach to studying molecular evolution and sets the stage for future research that could further refine these methodologies and expand their applicability. Denne avhandlingen utforsker evolusjonen og samevolusjonen av proteiner og deres implikasjoner i molekylærbiologi gjennom et bioinformatisk perspektiv. Den utvikler et rammeverk for å studere disse prosessene som opererer på tvers av taksonomiske skalaer og på molekylært nivå. Dette rammeverket gir en oversikt i stor skala over evolusjonsmønstre og identifiserer spesifikke interaksjonssteder i proteiner, ved å utnytte toppmoderne teknikker for sekvens-sameevolusjon og proteinstrukturprediksjon. Mer spesifikt konstruerer rammeverket to verktøy: et verktøy for fylogenetisk kartlegging av protein tilstedeværelse-fravær, og en pipeline som inkorporerer Direct Coupling Analysis for å oppdage inter-protein koevolusjon, samt utviklede strategier for bruk av AlphaFold2 for å forutsi komplekse proteininteraksjoner. Ved å bruke dette rammeverket adresserer denne forskningen kritiske spørsmål i molekylærbiologi, spesielt i konteksten av biologisk vei(pathway)-evolusjon, organisme-spesifikke vei-valg og protein-protein interaksjoner. Studiene presentert i denne avhandlingen demonstrerer anvendelsen av disse verktøyene i ulike biologiske sammenhenger som involverer enzymer i NAD-resirkuleringsveien og regulatoriske proteiner i mTOR-signaleringsnettverket. Det utviklede rammeverket fremmer ikke bare vår forståelse av molekylærbiologi, men åpner også nye veier for eksperimentell validering av forutsagte interaksjoner og videre datamaskinbasert utforskning, spesielt mot integrering av ulike typer resultater. Fremtidige forbedringer av dette rammeverket vil fokusere på inkorporering av sekvensbasert informasjon om paraloger og post-translasjonelle modifikasjoner, forbedring av tolkbarheten av resultater, og integrering av avanserte strukturprediksjonsmodeller for bedre å håndtere den genomiske kompleksiteten til eukaryote systemer. Denne avhandlingen understreker potensialet for bioinformatikk til å transformere vår tilnærming til å studere molekylær evolusjon og legger grunnlaget for fremtidig forskning som kan videre utbedre disse metodene og utvide deres anvendbarhet.
Has part(s)
Paper 1: Hsieh, Y.-C., Bockwoldt, M. & Heiland, I. VisProPhyl - Visualisation and analysis of protein phylogenetic presence-absence. (Manuscript under review).
Paper 2: Sharma, S., Hsieh, Y.-C-, Dietze, J., Bockwoldt, M., Strømland, Ø., Ziegler, M. & Heiland, I. (2022). Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. MDPI Metabolites, 12(7), 569. Also available in Munin at https://hdl.handle.net/10037/26162.
Paper 3: Hsieh, Y.-C., Heberle, A., Thedieck, K. & Heiland, I. Structure prediction in the mTOR-verse: evaluation of the predictive performance of AlphaFold Multimer on the G3BP:TSC complex and 4EBP:eIF4E complex in mTOR signaling. (Submitted manuscript).
Publisher
UiT The Arctic University of NorwayUiT Norges arktiske universitet
Metadata
Show full item recordCollections
Copyright 2024 The Author(s)
The following license file are associated with this item: