Vis enkel innførsel

dc.contributor.authorKrutto, Annika
dc.contributor.authorHaugdahl Nost, Therese
dc.contributor.authorThoresen, Magne
dc.date.accessioned2024-10-14T11:10:53Z
dc.date.available2024-10-14T11:10:53Z
dc.date.issued2024-05-29
dc.description.abstractThis article addresses the limitations of existing statistical models in analyzing and interpreting highly skewed miRNA-seq raw read count data that can range from zero to millions. A heavy-tailed model using discrete stable distributions is proposed as a novel approach to better capture the heterogeneity and extreme values commonly observed in miRNA-seq data. Additionally, the parameters of the discrete stable distribution are proposed as an alternative target for differential expression analysis. An R package for computing and estimating the discrete stable distribution is provided. The proposed model is applied to miRNA-seq raw counts from the Norwegian Women and Cancer Study (NOWAC) and the Cancer Genome Atlas (TCGA) databases. The goodness-of-fit is compared with the popular Poisson and negative binomial distributions, and the discrete stable distributions are found to give a better fit for both datasets. In conclusion, the use of discrete stable distributions is shown to potentially lead to more accurate modeling of the underlying biological processes.en_US
dc.identifier.citationKrutto A, Haugdahl Nost, Thoresen. A heavy-tailed model for analyzing miRNA-seq raw read counts. Statistical Applications in Genetics and Molecular Biology. 2024;23(1)en_US
dc.identifier.cristinIDFRIDAID 2276855
dc.identifier.doi10.1515/sagmb-2023-0016
dc.identifier.issn1544-6115
dc.identifier.urihttps://hdl.handle.net/10037/35225
dc.language.isoengen_US
dc.publisherDe Gruyteren_US
dc.relation.journalStatistical Applications in Genetics and Molecular Biology
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/801133/Norway/SCIENTIA-FELLOWS II: International Postdoctoral Fellowship Programme/SCIENTIA-FELLOWS II/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA heavy-tailed model for analyzing miRNA-seq raw read countsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)