Vis enkel innførsel

dc.contributor.authorNakano, Felipe Kenji
dc.contributor.authorÅkesson, Anna
dc.contributor.authorde Boer, Jasper
dc.contributor.authorDedja, Klest
dc.contributor.authorD’hondt, Robbe
dc.contributor.authorHaredasht, Fateme Nateghi
dc.contributor.authorBjörk, Jonas
dc.contributor.authorCourbebaisse, Marie
dc.contributor.authorCouzi, Lionel
dc.contributor.authorEbert, Natalie
dc.contributor.authorEriksen, Bjørn Odvar
dc.contributor.authorDalton, R. Neil
dc.contributor.authorDerain-Dubourg, Laurence
dc.contributor.authorGaillard, Francois
dc.contributor.authorGarrouste, Cyril
dc.contributor.authorGrubb, Anders
dc.contributor.authorJacquemont, Lola
dc.contributor.authorHansson, Magnus
dc.contributor.authorKamar, Nassim
dc.contributor.authorLegendre, Christophe
dc.contributor.authorLittmann, Karin
dc.contributor.authorMariat, Christophe
dc.contributor.authorMelsom, Toralf
dc.contributor.authorRostaing, Lionel
dc.contributor.authorRule, Andrew D.
dc.contributor.authorSchaeffner, Elke
dc.contributor.authorSundin, Per-Ola
dc.contributor.authorBökenkamp, Arend
dc.contributor.authorBerg, Ulla
dc.contributor.authorÅsling-Monemi, Kajsa
dc.contributor.authorSelistre, Luciano
dc.contributor.authorLarsson, Anders
dc.contributor.authorNyman, Ulf
dc.contributor.authorLanot, Antoine
dc.contributor.authorPottel, Hans
dc.contributor.authorDelanaye, Pierre
dc.contributor.authorVens, Celine
dc.date.accessioned2024-12-11T10:15:42Z
dc.date.available2024-12-11T10:15:42Z
dc.date.issued2024-11-02
dc.description.abstractIn clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, such as the European Kidney Function Consortium (EKFC) equation. Despite being the most general equation, EKFC, just like previously proposed approaches, can still struggle to achieve satisfactory performance, limiting its clinical applicability. As a possible solution, recently machine learning (ML) has been investigated to improve GFR prediction, nonetheless the literature still lacks a general and multi-center study. Using a dataset with 19,629 patients from 13 cohorts, we investigate if ML can improve GFR prediction in comparison to EKFC. More specifically, we compare diverse ML methods, which were allowed to use age, sex, serum creatinine, cystatin C, height, weight and BMI as features, in internal and external cohorts against EKFC. The results show that the most performing ML method, random forest (RF), and EKFC are very competitive where RF and EKFC achieved respectively P10 and P30 values of 0.45 (95% CI 0.44;0.46) and 0.89 (95% CI 0.88;0.90), whereas EKFC yielded 0.44 (95% CI 0.43; 0.44) and 0.89 (95% CI 0.88; 0.90), considering the entire cohort. Small differences were, however, observed in patients younger than 12 years where RF slightly outperformed EKFC.en_US
dc.identifier.citationNakano, Åkesson, de Boer, Dedja, D’hondt, Haredasht, Björk, Courbebaisse, Couzi, Ebert, Eriksen, Dalton, Derain-Dubourg, Gaillard, Garrouste, Grubb, Jacquemont, Hansson, Kamar, Legendre, Littmann, Mariat, Melsom, Rostaing, Rule, Schaeffner, Sundin, Bökenkamp, Berg, Åsling-Monemi, Selistre, Larsson, Nyman, Lanot, Pottel, Delanaye, Vens. Comparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rate. Scientific Reports. 2024;14(1)en_US
dc.identifier.cristinIDFRIDAID 2327342
dc.identifier.doi10.1038/s41598-024-77618-w
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/10037/35949
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalScientific Reports
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleComparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rateen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)